Research statement

Pinak Mandal

Background

I am a final year PhD student in mathematics at International Centre for Theoretical Sciences (ICTS) -
Tata Institute of Fundamental Research. Before joining PhD I obtained my BSc and MSc in mathematics
from Jadavpur University. So far I have enjoyed working on a broad range of applied mathematics or
computational problems. Some of them are given below.

e Under prof Vishal Vasan I have worked on air pollution modelling which used a simple PDE model for
atmospheric plume and incorporating real world data into the model to compute pollutant concentra-
tions.

e At the Indian Institute of Science I have worked on several projects. A few of them are analyzing prof
Ramesh Hariharan’s chromosome data and determining the most likely gene configurations that cause
color blindness,

e finding social structures in dolphins of Doubtful sound, a fjord in New Zealand,
e music genre classification with machine learning,
e finding approximate solutions to computationally challenging with genetic algorithms.

e In 2021 I was part of Neuromatch Academy, where I worked with several other international students
with varied backgrounds (ranging from neuroscience to chemistry) to show that fMRI data can be used
to predict types of images seen by human subjects.

e [ have written libraries for simulating general purpose simulation of stochastic processes, Markov chains
with implementations of popular filters often used in data assimilation.

e Under Prof Amit Apte’s guidance I have been working on data assimilation (focusing on numerical
filter stability) and solving high dimensional PDEs (tested in 10 dimensions).

e In 2022 I was selected as a part of the Future research talent program hosted by Australian National
University (ANU) and have been exploring the possibility of solving magnetohydrodynamics equations
written in an augmented Lagrangian form under prof Matthew Hole.

Nonlinear filter stability

In earth sciences and various other fields a great amount of data are constantly being collected and an impor-
tant problem is to incorporate these data into physical dynamical models for making real time predictions
for weather forecasts, hurricane tracking to name a few. This problem is known as data assimilation (DA).
Bayesian approach to DA leads to the problem of nonlinear filtering [1I, [2], which studies the conditional
distribution of the state at any time conditioned on observations up to that time [12] [7].

In case of deterministic dynamics the problem of non-linear filtering can be stated as follows. We have a
state-vector z; € R?, at discrete time &, modelled to follow

Tpy1 = fag) (1)



which we have access only through, often lower dimensional, noisy observation

yr = Hxp + i (2)

where H is a matrix of dimension ¢ x d and nx ~ N (04, 0%1,) are i.i.d. additive Gaussian noises. We also have
a guess for the initial state x as a distribution zy ~ pu. The goal of filtering is to determine the distribution
of x, given yo.,, all the observations up to time n which is called the filtering distribution. In practice,
our guess for the initial distribution g might be far off from the actual initial state vector. A measure of
robustness of a filtering algorithm is how well it is able to ”"forget” the initial distribution i.e. given two
different initial distributions does a filtering algorithm produce near-identical filtering distributions after a
while?

We propose a new definition to assess this property called ”stability” of a filter using the Wasserstein
metric. Using this definition we demonstrate [8] two popular Monte-Carlo based filtering algorithms the
particle filter [5] and the ensemble Kalman filter [6] are stable in chaotic test cases. In a separate work [9] I
show that under certain conditions the new definition is a stronger version of previous stability definitions [11]
which despite having theoretical appeal lack methods of direct computation. We also establish numerically
a relation between filter stability and filter convergence by showing that the Wasserstein distance between
filters with two different initial conditions stays proportional to the bias or the RMSE of the filter before
reaching stability.

Future work

e The linear relationship between filter RMSE and filter stability can be seen experimentally but a
mechanism which causes this remains unclear and hence is worth exploring.

e Since in the presence of attractors the filtering distributions are eventually supported on the attrac-
tor, sampling the attractor might lead to more robust filtering algorithms. Also, gradient descent in
Wasserstein distance might facilitate better sampling of the posterior which is another point of interest.

Solving high dimensional Fokker-Planck equations with machine learning

Fokker-Planck equations describe evolution of distributions under noisy dynamics and present themselves in
a wide variety of topics from granular media [3] to plasma physics [10]. In this work (in preparation) we
focus on Fokker-Planck equations of the form,
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where p1: R>q X R? — R? is a vector-valued and o : R>q x R? — R¥ is a d x I matrix-valued function Here
® is the Hadamard product, V? implies Hessian and ¥ = %UJT. For ease of discussion we classify systems
into two broad categories gradient systems where ;. = —VV for some potential function V' and non-gradient
systems where the drift u can not be expressed in such a way.

T establish a PINN (physics informed neural net)-based algorithm that carefully avoids one critical point of
the loss function and therefore is able to compute unnormalized steady states even for dimensions traditionally
condsidered to be challenging eg d = 10. Even though the networks are dense in Sobolev spaces containing
the true solutions, similar methods for the time-dependent equation are not guaranteed to converge to the
true solution in practice. To deal with this an auxiliary backward Kolmogorov equation can be solved with
Feynman-Kac formula and combining it with unnormzalized steady-state one can compute the normalized
time-dependent solution. I focus on an important class of systems (both gradient and non-gradient) that
possess an attractor and explain that the final method is capable of computing time-dependent solutions for
gradient systems upto an arbitrary amount of time and for non-gradient systems upto a finite amount of
time.



Future Work

e The Bayesian filtering problem is usually solved through two steps. In the first step called ”prediction”
we compute the time evolution of the distribution at the previous time-step. In case of noisy dynamics
it is akin to solving a Fokker-Planck equation and therefore a new filtering method can be imagined
that uses a Fokker-Planck solver. Whether the method described here can be extended to an arbitrary
amount of time for non-gradient systems is a topic of interest.

e The non-convex structure of the loss function is another point of interest. All the critical points of
the loss function for the steady state might lie on a connected one dimensional manifold or might be
separated from each other. And this sturcture can be probed with numerical experiments.

Solving constrained variational problems with machine learning

Constrained variational problems are ubiquitous in physics due the stationary-action principle. Here I look
at problems of the following form,

minimize/ J(u, Du)dx subject to C(u(x),Du(x))=0¥x€Q and ulpgn=g (5)
Q

u(x)

where D denotes derivatives. Finite dimensional constrained optimization problems can be tackled with
the augmented Lagrangian method [I3]. In this method one iteratively updates one’s guess for both the
solution and the Lagrange multipliers. Since in we are looking for a function or attempting to solve an
infinite dimension optimization problem, machine learning can be employed as a useful tool. Just like the
finite dimensional optimization problems, we can compute both the solution and the Lagrange multipliers
represented as neural nets with an alternate gradient descent scheme.

In this ongoing work I demonstrate as an example that with this method, minimal surfaces like helicoid
(non self-intersecting) and Enneper’s surface (self-intersecting) can be computed given the boundary data in
R3. This problem can be set up as,

minimize // \/1+u2 +udedy subject to ulog =g (6)

In this case the associated Euler-Lagrange PDE given by,
(1+ ug)uyy — 2UugUyUyy + (1 + ui)um =0 V(z,y) € Q subject to ulsgg =g (7)

can be also be solved using machine learning with the added cost of the extra derivative computation. As
other examples I compute the Beltrami magnetic field in a 3D box and solution to the Grad-Shafranov
equation. I also explore three different ways of satisfying constraints in a machine learning setting - by
design, by the penalty method and by the augmented Lagrangian method. I experimentally show that the
augmented Lagrangian method converges much faster than the penalty method at the cost of using more
memory.

Future work

e [ in collaboration with the plasma physics group at Australian National University led by Prof Matthew
Hole, am exploring the possibility of solving magnetohydrodynamics equations written in an augmented
Lagrangian form [4] using machine learning.

A gallery of examples
A gallery of examples from my current projects is available at my Github page https://pinakm9.github.io/gallery22/.


https://pinakm9.github.io/gallery22/
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